Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Drug Dev Res ; 84(3): 470-483, 2023 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2307551

RESUMEN

In the quest to develop potent inhibitors for Mycobacterium tuberculosis, novel isoniazid-based pyridinium salts were designed, synthesized, and tested for their antimycobacterial activities against the H37 Rv strain of Mycobacterium tuberculosis using rifampicin as a standard. The pyridinium salts 4k, 4l, and 7d showed exceptional antimycobacterial activities with MIC90 at 1 µg/mL. The in vitro cytotoxicity and pharmacokinetics profiles of these compounds were established for the identification of a lead molecule using in vivo efficacy proof-of-concept studies and found that the lead compound 4k possesses LC50 value at 25 µg/mL. The in vitro antimycobacterial activity results were further supported by in silico studies with good binding affinities ranging from -9.8 to -11.6 kcal/mol for 4k, 4l, and 7d with the target oxidoreductase DprE1 enzyme. These results demonstrate that pyridinium salts derived from isoniazid can be a potentially promising pharmacophore for the development of novel antitubercular candidates.


Asunto(s)
Isoniazida , Mycobacterium tuberculosis , Isoniazida/farmacología , Simulación del Acoplamiento Molecular , Sales (Química) , Antituberculosos/química , Pruebas de Sensibilidad Microbiana
2.
ACS Omega ; 7(48): 43856-43876, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2150986

RESUMEN

Great attempts have been done for the development of novel antiviral compounds against SAR-CoV-2 to end this pandemic situation and save human society. Herewith, we have synthesized 3-substituted indole/2-substituted pyrrole 1,2-dihydropyridine and azaxanthone scaffolds using simple, commercially available starting materials in a one-pot, green, and regioselective manner. Further, the regioselectivity of product formation was confirmed by various studies such as controlled experiments, density functional theory (DFT), Mulliken atomic charge, and electrostatic potential (ESP) surface. In addition, 3-substituted indole 1,2-dihydropyridine was successfully converted into a biologically enriched pharmacophore scaffold, viz., indolylimidazopyridinylbenzofuran scaffold, in excellent yield. Moreover, the synthesized 3-substituted indole 1,2-dihydropyridine/2-substituted pyrroles were analyzed in docking studies for anti-SARS-CoV-2 properties against their main protease (Mpro) and anti-Delta plus properties against their protein of the Delta plus K417N mutant. Further, the drug-likeness prediction was analyzed by the Lipinski rule and other pharmacokinetic properties like absorption, distribution, metabolism, excretion, and toxicity using preADMET prediction. Interestingly, the docking results show that out of 20 synthesized compounds, 5 of them for Mpro of SAR-CoV-2 and 9 of them for 7NX7 spike glycoprotein's A chain of Delta plus K417N show greater binding affinity when compared with remdesivir that is the first to receive FDA approval and is currently used as a potent drug for the treatment of COVID-19. These results suggest that indole/pyrrole substituted 1,2-dihydropyridine derivatives are capable of combating SARS-CoV-2 and its Delta plus mutant.

3.
ChemMedChem ; 16(9): 1403-1419, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1064335

RESUMEN

Nucleoside and nucleotide analogues are structurally similar antimetabolites and are promising small-molecule chemotherapeutic agents against various infectious DNA and RNA viruses. To date, these analogues have not been documented in-depth as anti-human immunodeficiency virus (HIV) and anti-hepatitis virus agents, these are at various stages of testing ranging from pre-clinical, to those withdrawn from trials, or those that are approved as drugs. Hence, in this review, the importance of these analogues in tackling HIV and hepatitis virus infections is discussed with a focus on the viral genome and the mechanism of action of these analogues, both in a mutually exclusive manner and their role in HIV/hepatitis coinfection. This review encompasses nucleoside and nucleotide analogues from 1987 onwards, starting with the first nucleoside analogue, zidovudine, and going on to those in current clinical trials and even the drugs that have been withdrawn. This review also sheds light on the prospects of these nucleoside analogues in clinical trials as a treatment option for the COVID-19 pandemic.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Hepatitis Viral Humana/tratamiento farmacológico , Nucleósidos/uso terapéutico , Nucleótidos/uso terapéutico , COVID-19/epidemiología , Ensayos Clínicos como Asunto , Reposicionamiento de Medicamentos , VIH/efectos de los fármacos , VIH/enzimología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Virus de Hepatitis/efectos de los fármacos , Virus de Hepatitis/enzimología , Humanos , Pandemias , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Inhibidores de la Transcriptasa Inversa/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
4.
Eur J Pharmacol ; 886: 173448, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1005587

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is distinctly infective and there is an ongoing effort to find a cure for this pandemic. Flavonoids exist in many diets as well as in traditional medicine, and their modern subset, indole-chalcones, are effective in fighting various diseases. Hence, these flavonoids and structurally similar indole chalcones derivatives were studied in silico for their pharmacokinetic properties including absorption, distribution, metabolism, excretion, toxicity (ADMET) and anti-SARS-CoV-2 properties against their proteins, namely, RNA dependent RNA polymerase (rdrp), main protease (Mpro) and Spike (S) protein via homology modelling and docking. Interactions were studied with respect to biology and function of SARS-CoV-2 proteins for activity. Functional/structural roles of amino acid residues of SARS-CoV-2 proteins and, the effect of flavonoid and indole chalcone interactions which may cause disease suppression are discussed. The results reveal that out of 23 natural flavonoids and 25 synthetic indole chalcones, 30 compounds are capable of Mpro deactivation as well as potentially lowering the efficiency of Mpro function. Cyanidin may inhibit RNA polymerase function and, Quercetin is found to block interaction sites on the viral spike. These results suggest flavonoids and their modern pharmaceutical cousins, indole chalcones are capable of fighting SARS-CoV-2. The in vitro anti-SARS-CoV-2 activity of these 30 compounds needs to be studied further for complete understanding and confirmation of their inhibitory potential.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Chalconas/química , Chalconas/farmacología , Flavonoides/farmacología , Indoles/química , Simulación del Acoplamiento Molecular , Proteínas Virales/metabolismo , Betacoronavirus/metabolismo , Chalconas/metabolismo , Chalconas/farmacocinética , Simulación por Computador , Flavonoides/metabolismo , Flavonoides/farmacocinética , Conformación Proteica , SARS-CoV-2 , Seguridad , Distribución Tisular , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA